Опять про i5: обзор линейки процессоров Intel Core i5 с микроархитектурой Ivy Bridge. В чем отличие процессоров Intel Core i3, i5 и i7? I5 1 поколения

Долгожданные модели для массовой платформы, но уже другой

Еще каких-то 15 лет назад вопрос количества ядер в центральных процессорах типовых персональных компьютеров просто не стоял — разумеется, ядро было одно. Правда, самих процессоров могло быть два, хотя в те (и более ранние) годы это нельзя было назвать дешевым удовольствием, а для большинства пользователей — еще и хоть сколько-нибудь полезным. По сути, наблюдалась стандартная проблема курицы и яйца: программисты не учитывали возможность наличия второго процессора, поскольку пользователи покупали двухпроцессорные компьютеры редко, а покупали их редко именно потому, что программ, способных реализовать потенциал нескольких вычислительных устройств, практически не было. В определенных сферах SMP-конфигурации были вполне к месту, однако они оставались нишевыми решениями — собственно, наиболее массовые на тот момент операционные системы линейки Windows 9x подобные «извращения» не поддерживали в принципе.

Положение дел начало меняться в 2005 году, когда и AMD, и Intel начали поставлять двухъядерные процессоры, но изменения происходили не слишком быстро, потому что массового ПО, способного в полной мере воспользоваться новыми возможностями, было все еще слишком мало. Конечно, существовало специализированное ПО, причем встречались программы, умеющие утилизировать и большее количество ядер, но только в определенных нишах. Впрочем, переход от одного ядра к двум был даже не количественным, а качественным и при использовании преимущественно однопоточного ПО: «лишнее» ядро оставалось свободным для обеспечения нормального функционирования ОС, так что «заморозить» компьютер даже «кривыми» программами стало сложнее, что многим нравилось. Красоту концепции портило то, что первые двухъядерные модели процессоров представляли собой «склейки» из пары одноядерных, так что при прочих равных стоили дороже либо при сопоставимых ценах были не совсем равными по техническим характеристикам (тактовой частоте, например). Это приводило к более низкой производительности в массовом ПО и, соответственно, невысокой популярности двухъядерных процессоров в целом. В общем, получался такой своеобразный замкнутый круг.

«Разомкнуть» его удалось во второй половине 2006 года — когда Intel представила процессоры семейства Core 2 Duo. Во-первых, они изначально имели двухъядерный дизайн, так что выпуск на его основе одноядерных моделей был сильно ограниченным и затрагивал только самый нижний сегмент (проще говоря, Celeron). Во-вторых, они сами по себе оказались очень удачными — и в настольном, и в мобильном исполнении. Заодно это привело к ценовой войне между AMD и Intel, в результате которой цены процессоров и упали до привычного нам сегодня уровня. В общем, два ядра стали «нормой жизни», что начали учитывать и программисты — пусть и с небольшой задержкой. А вот четыре ядра долгое время массовыми стать не могли, хотя Core 2 Quad компания представила в том же году: они вертелись в том же замкнутом круге «нет софта — не берут, а раз не берут — нет софта». Лишь у немногих пользователей такой софт был, и они эти четырехъядерные процессоры встретили тепло, задумываясь и о большем количестве ядер. Иногда они даже покупали по старой памяти двухпроцессорные системы:)

Но чтобы такие продукты смогли стать массовыми, нужно было подготовить рынок, чем в Intel и занимались. В частности, первые процессоры Core в конце 2008 года добавили к четырем ядрам еще и поддержку Hyper-Threading, что позволяло им выполнять восемь потоков кода. В 2010 году появились первые шестиядерные процессоры, быстро подешевевшие с уровня $1000 (что не так уж много — цена экстремальных Core 2 Quad достигала и полутора тысяч) до примерно $600. Но особенно вся эта подготовка стала заметна в 2011 году — с выходом Sandy Bridge для LGA1155. Тогда компания четко ограничила ценовую нишу двухъядерников рамками в $150, т. е. в дорогие компьютеры они уже точно не попадали. Да и вообще массовая платформа оказалась «зажата» планкой в районе $300 — по этим ценам продавались четырехъядерные Core i7 с HT. В топовых же системах можно было встретить, скорее, шестиядерные процессоры, которые чуть позднее (после выхода в свет LGA2011-3) опустились в цене почти до $400, т. е. разница стала минимальной. Ну а в самых мощных системах начали прописываться восьмиядерные процессоры — с рекомендованной ценой в «штуку баксов», но ведь незадолго до этого по таким (и даже более высоким) ценам продавались модели всего с четырьмя ядрами.

В общем, все эти меры постепенно привели к тому, что потенциальная база для ПО, способного использовать восемь и более потоков вычисления, стала большой. Внесли свою лепту и старания AMD — компания пыталась в конкурентной борьбе «блеснуть ядрами» не раз и не два (не слишком успешно, но во многом как раз из-за указанных в начале проблем). Кроме того, в игровых консолях прочно «прописались» восьмиядерные процессоры, пусть и со слабенькими ядрами — и в результате разработчики игровых движков просто вынуждены были распараллеливать код в максимальной степени: «выехать» на одном-двух быстрых потоках было невозможно вследствие полного отсутствия таковых. В итоге от Intel начали ожидать следующего логичного шага — внедрения в массовый сегмент хотя бы шестиядерных процессоров. Причем ожидалось это событие вместе с появлением Skylake и платформы LGA1151, т. е. пару лет назад, но его не произошло…

Собственно, уже в начале 2015 года компания дала понять, что на новой платформе распределение ролей и цен будет точно таким же, как на предыдущей LGA1150 и даже на LGA1155. Разумеется, это вызвало разочарование многих пользователей настольных компьютеров, которые за предыдущие годы успели обзавестись четырехъядерным процессором и начали задумываться о большем. Но «большее» было доступно только на более дорогой платформе, куда некоторые вынужденно и мигрировали. Остальные выхода из тупика не видели. Более того, не прослеживался он и позднее, когда через несколько месяцев после появления Skylake на рынке стало известно, что следующее поколение Core (Kaby Lake) будет отличаться от Skylake незначительно: явных изменений не стоит ждать ни по ТТХ, ни по техпроцессу. На конец же 2017 года планировались поставки 10-нанометровых Cannonlake с неизвестными характеристиками.

Прошло несколько месяцев, и планы снова изменились: оказалось, что будет еще один вариант процессоров, причем по-прежнему использующий техпроцесс 14 нм — в очередной раз улучшенный, но все-таки довольно старый, поскольку первые Broadwell на его основе были выпущены еще три года назад (естественно, это были мобильные процессоры — менее массовые рынки, включая настольный, обычно получают новые модели с некоторой задержкой). И главное — старшие модели Coffee Lake должны были получить как раз искомые шесть ядер и привычное уже к тому моменту исполнение LGA1151 — то, чего ждали от Skylake позапрошлой осенью. При этом цены должны были остаться неизменными, т. е. все семейства впервые с 2011 года должны были «съехать вниз» на одну ступеньку. Во всяком случае, по первым предположениям Core i5 должны были получить Hyper-Threading, а Core i3 — четыре ядра (конфигурация «2+HT» осталась только для Pentium, т. е. «ушла» в сегмент ниже $100, причем это она уже сделала, начиная с ноутбучных Broadwell и настольных Kaby Lake). Потом выяснилось, что все-таки и Core i5 будут шестиядерными. Вот тут уже, возможно, сказалась имеющаяся у Intel информация об AMD Ryzen: и об уровне быстродействия, и о количестве ядер. Причем, напомним (а кому-то и расскажем впервые), AMD Ryzen — это не только максимальные восемь ядер, но и модели для массового (в т. ч. мобильного) рынка с четырьмя ядрами в паре с видеоядром. Правда вовремя эти процессоры так и не вышли (они ожидались еще летом этого года), но это уже мелкие технические детали. Фактически же Coffee Lake ориентирован на те же ниши и имеет аналогичную конфигурацию (т. е. с интегрированным GPU), так что наделить все модели шестью ядрами — очень удобно для конкуренции. Тем более что четыре ядра с поддержкой Hyper-Threading Intel удалось «запихать» в теплопакет 15 Вт — таковы Kaby Lake-R, также относящиеся к восьмому поколению и использующие аналогичные оптимизации, причем не только Core i7, но и Core i5. Понятно, что видеоядро у AMD получится (скорее всего) более производительным, но процессорная составляющая интересует многих пользователей не меньше, а то и больше. В конце концов, для тех, кого интересует именно графика, есть дискретные видеокарты — IGP от них все равно всегда будет отставать. Так что с этой стороны все логично.

А вот с «привычным исполнением LGA1151» все оказалось совсем не так гладко. По понятным причинам новые процессоры потребовали новых чипсетов — к такой ситуации все, в общем-то, давно привыкли. Но вот то, что новые чипсеты окажутся несовместимы со старыми процессорами — от подобного все со времен LGA775 уже отвыкли. И даже тогда нередко «официальная несовместимость» на практике превращалась в «неофициальную совместимость». Получится ли так в этот раз? Пока сложно отвергать такую возможность, но на текущий момент старые процессоры физически устанавливаются в новые платы, но работать не могут. При этом совсем новых чипсетов 300-й серии пока тоже нет, есть лишь Z370, который полностью аналогичен прежнему Z270 — это топовый «калиф на час», поскольку в следующем году его должен заменить Z390 с поддержкой USB 3.1 Gen2 и прочими улучшениями. Чуть ранее должны выйти и другие модели чипсетов нового семейства, в том числе и недорогие В360 или Н310, которых некоторое время будет очень не хватать для младших Core i3-8100: идея установки недорогого неразгоняемого процессора на плату с дорогим оверклокерским чипсетом выглядит странновато. Впрочем, новые Core i3 не попадают в первую волну отгрузок, но и Core i5-8400 это тоже в какой-то степени касается. В общем, первое время на рынке возможны перекосы, так что пара из старого «дорогого» процессора и старой дешевой платы может обойтись покупателю дешевле, чем новый «дешевый» процессор, для которого не выпустили пока еще соответствующих системных плат. Это в обязательном порядке придется учитывать тем, кто собрался покупать новые решения Intel, как только те станут доступны. Ну а как они работают, мы сейчас проверим.

Конфигурация тестовых стендов

Процессор Intel Core i5-8600K Intel Core i7-8700K
Название ядра Coffee Lake Coffee Lake
Технология пр-ва 14 нм 14 нм
Частота ядра, ГГц 3,6/4,3 3,7/4,7
Кол-во ядер/потоков 6/6 6/12
Кэш L1 (сумм.), I/D, КБ 192/192 192/192
Кэш L2, КБ 6×256 6×256
Кэш L3, МиБ 9 12
Оперативная память 2×DDR4-2666 2×DDR4-2666
TDP, Вт 95 95

Пока нам досталась, можно сказать, лучшая пара — Core i5-8600K и i7-8700K, имеющая разблокированные множители, так что им чипсет Z370 может пригодиться. В принципе, отличаются друг от друга эти процессоры так же, как и раньше: i5 имеют чуть более низкие официальные частоты и лишены поддержки Hyper-Threading. На этом — все. Физических ядер у обеих моделей шесть, плюс двухканальный контроллер памяти с поддержкой DDR4-2667 и старое видеоядро, которое хоть и называется теперь UHD Graphics 630, но аналогично HD Graphics 630 в Kaby Lake (да и от HD Graphics 530 времен Skylake оно не слишком отличается). Впрочем, видеоядро мы сегодня трогать не будем — все тесты выполнены с дискретной видеокартой на базе GTX 1070.

Процессор Intel Core i5-7600K Intel Core i7-7700K
Название ядра Kaby Lake Kaby Lake
Технология пр-ва 14 нм 14 нм
Частота ядра, ГГц 3,8/4,2 4,2/4,5
Кол-во ядер/потоков 4/4 4/8
Кэш L1 (сумм.), I/D, КБ 128/128 128/128
Кэш L2, КБ 4×256 4×256
Кэш L3, МиБ 6 8
Оперативная память 2×DDR4-2400 2×DDR4-2400
TDP, Вт 91 91
Цена T-1716356460 T-1716356308

В обязательном порядке нам нужно сравнить новые процессоры с их непосредственными предшественниками седьмого поколения: Core i5-7600K и i7-7700K. Несложно заметить, что это почти то же самое — только ядер четыре, а не шесть. Привычная (и даже надоевшая) за шесть лет конфигурация.

Процессор Intel Core i7-6800K Intel Core i7-7800X
Название ядра Broadwell-E Skylake-X
Технология пр-ва 14 нм 14 нм
Частота ядра, ГГц 3,4/3,6 3,5/4,0
Кол-во ядер/потоков 6/12 6/12
Кэш L1 (сумм.), I/D, КБ 192/192 192/192
Кэш L2, КБ 6×256 6×1024
Кэш L3, МиБ 15 8,25
Оперативная память 4×DDR4-2400 4×DDR4-2666
TDP, Вт 140 140
Цена T-13974485 T-1729322998

Еще четыре процессора мы взяли из недавнего тестирования HEDT-платформ : Core i7-6800K недавно был самым дешевым шестиядерным процессором Intel, а сейчас его сменяет i7-7800X (прямое сравнение оного с i7-8700K, как нам кажется, вообще очень интересно). Благодаря специфике платформы, эти испытуемые сегодня будут работать с удвоенным относительно прочих участников тестирования объемом памяти, что, впрочем, не так уж важно на практике (но упомянуть про это нужно).

Процессор AMD Ryzen 5 1600Х AMD Ryzen 7 1800Х
Название ядра Ryzen Ryzen
Технология пр-ва 14 нм 14 нм
Частота ядра, ГГц 3,6/4,0 3,6/4,0
Кол-во ядер/потоков 6/12 8/16
Кэш L1 (сумм.), I/D, КБ 384/192 512/256
Кэш L2, КБ 6×512 8×512
Кэш L3, МиБ 16 16
Оперативная память 2×DDR4-2667 2×DDR4-2667
TDP, Вт 95 95
Цена T-1723154074 T-1720383938

И пара моделей AMD. Ryzen 5 1600X при использовании дискретной видеокарты был непосредственным конкурентом Core i5-7600K, а теперь должен сражаться с i5-8600K. Ryzen 7 1800X, строго говоря, непосредственно ни с кем не пересекается. Но младший Ryzen 7 1700 к нам в руки, к сожалению, так и не попал, так что достаточно оценить концы диапазона — и он, и 1700Х по производительности должны быть как раз где-то между 1600Х и 1800Х. 1700Х, кстати, как мы знаем, по производительности вообще практически не отличается от 1800Х, но потребляет больше энергии — так что неспроста стоит дешевле. В общем, можно считать, что мы дали небольшую фору AMD, взяв Ryzen 7 1800X, а также тестируя оба процессора с немного разогнанной памятью — DDR4-2933 вместо штатных 2667 МГц.

Методика тестирования

Методика . Здесь же вкратце напомним, что базируется она на следующих четырех китах:

  • Методика измерения энергопотребления при тестировании процессоров
  • Методика мониторинга мощности, температуры и загрузки процессора в процессе тестирования
  • Методика измерения производительности в играх образца 2017 года

Подробные результаты всех тестов доступны в виде полной таблицы с результатами (в формате Microsoft Excel 97—2003) . Непосредственно же в статьях мы используем уже обработанные данные. В особенности это относится к тестам приложений, где все нормируется относительно референсной системы (AMD FX-8350 с 16 ГБ памяти, видеокартой GeForce GTX 1070 и SSD Corsair Force LE 960 ГБ) и группируется по сферам применения компьютера.

iXBT Application Benchmark 2017

Восемь ядер — это, конечно, восемь, но новые шестиядерники Intel не слишком-то и отстают от Ryzen 7 1800X, а стоят дешевле. Особенно хорош, естественно, i7-8700K, который работает даже немного быстрее, чем 7800Х. В принципе, и i5-8600K нас не разочаровал: он с легкостью обошел Core i7-7700K. Правда, от Ryzen 5 1600X он все-таки отстает, но это уже не тот разгром, который наблюдался в случае i5-7600K. Кстати, стоит обратить внимание на то, что преимущество над предшественником более чем полуторакратное, т. е. речь идет не только о дополнительной паре ядер. Да и Core i7 тоже «отмасштабировался» практически линейно.

Расклад почти повторяется, только здесь уже Core i7-8700K не отстал и от 1800Х. Отличный результат в верхнем сегменте! И похуже — в среднем: Ryzen 5 1600X продолжает оставаться привлекательным при использовании дискретной видеокарты. С другой стороны, можно рассчитывать на то, что после появления недорогих плат какой-нибудь Core i5-8400 отлично подойдет тому, кому быстрая графика не нужна — ему-то, по сути, вообще не с кем будет конкурировать в таком раскладе:)

Как мы уже знаем, в этой группе увеличение количества ядер с шести до восьми дает не очень большой эффект, да и польза от SMT (естественно) в таких условиях минимальна. Поэтому сегодняшнюю пару новичков можно просто считать победителями.

Photoshop продолжает чудить: программе явно не нравится не только отсутствие Hyper-Threading, поскольку производительность Core i5-8600K здесь лишь на уровне i5-7400, даже не 7600К. Остальные две программы в группе «подтягивают» новичка повыше, но все равно мы получаем прекрасную иллюстрацию того, как программные проблемы могут испортить все, что угодно. А вот у Core i7-8700K таких проблем нет, так что в общем зачете он уступил только i7-7800X.

И опять потоки решают всё , так что Core i5-8600K не удалось догнать Core i7-7700K. C другой стороны, он дешевле — ему можно:) А вот отставать от Ryzen 5 1600X, да еще и так заметно, конечно, не стоило, но законы физики нарушать сложно. Качество не всегда перевешивает количество, и Core i7-8700K выглядит лишь как самый быстрый шестиядерный процессор (которым он и является). Не более того. Но и не менее.

Есть ощущение, что разок «сыграл» четырехканальный контроллер памяти — во всяком случае, чем-либо иным такой успех i7-6800K объяснить сложно. Но i7-8700K отстает от него незначительно, а вот сам опережает Ryzen 7 1800X, замыкающий тройку лидеров, довольно заметно. У этой программы, возможно, есть резерв для улучшения работы с новыми процессорами, что позволит i7-7800Х и Ryzen демонстрировать более высокий результат. Впрочем, и так положение дел с архивированием благоприятно для новичков, хотя своих непосредственных предшественников они не слишком обгоняют.

Вот в этой группе как раз главное — заметный прирост производительности по сравнению с предшественниками, причем по тем же ценам. Очень хороший уровень, хотя и не рекордный, но ведь и шесть ядер по меркам сегодняшнего дня не максимум. А вот при такой близости к массовому ценовому сегменту результат именно что рекордный.

В общем и целом, очень серьезная заявка, особенно в случае новых Core i7, которые могут прекрасно конкурировать и с Ryzen 7, и с «однофамильцами» для HEDT-платформы. Core i5 радует немного меньше, но он уже выходит на уровень недавних Core i7 и заметно обгоняет предшественника. В то же время, от Ryzen 5 1600X новому Core i5 отставать не положено. И проблема не только в Photoshop — во многих других программах ситуация аналогичная. Впрочем, наличие встроенного видеоядра позволяет собирать на новых Core i5 небольшие и энергоэкономичные (и недорогие) компьютеры, а у Ryzen с этим сложнее. Но если дискретную видеокарту все равно использовать нужно, то в этом сегменте превосходство остается у AMD, причем не обязательно покупать 1600Х — можно немного разогнать совсем недорогой 1600. А вот «сверху» положение дел радикально исправлено в пользу Intel.

Энергопотребление и энергоэффективность

Впрочем, производительность и цена — не единственные характеристики процессора, а в плане энергопотребления Core i5-8600K как раз смотрится отлично: он практически идентичен предшественнику. Энергопотребление же Core i7-8700K несколько выше, чем хотелось бы.

Особенно это заметно, если оценить только потребление энергии процессором, без учета платформы: все-таки сотня ватт для массовых решений — это многовато. Может быть, в Intel старались «выжать» из топовой модели максимум производительности (ведь не секрет, что подобные процессорные гонки флагманов внимательно изучают и те, кто все равно купит только Celeron), а может, нам попался не слишком удачный экземпляр. Но в целом — нам хотелось бы большего… Точнее, меньшего: результат нового флагмана — лишь на уровне Ryzen 5 1600X, который неплох для AMD, но не для Intel. Впрочем, хотя бы с i7-7800Х новинку сравнивать не приходится — и то хорошо.

А вот от Core i5-8600K мы хотели бы более высокой производительности, поскольку сейчас энергоэффективность новой пары процессоров примерно равна. И все же у Core i5 она чуть лучше, что тоже косвенно намекает на определенные проблемы у этой модели Core i7 (или у нашего экземпляра) — ранее использование SMT ее улучшало, а не наоборот. Впрочем, это придирки — все равно оба этих процессора абсолютные лидеры из протестированных на данный момент. И конкурентов… не наблюдается:)

iXBT Game Benchmark 2017

Сегодня мы в очередной раз приведем сначала все диаграммы, а затем уже — общий комментарий для них.









Как видим, результаты всех испытуемых попадают в очень небольшой диапазон — что и предполагалось. Имеется пара игр, где наблюдается отставание Core i5-7600K от соперников (в одной — очень заметное), но он здесь единственный «всего лишь» четырехъядерный процессор, и этого даже при высокой частоте ядер уже иногда может не хватать. Впрочем, чаще всего разница если и есть, то небольшая. Понятно, что при использовании более мощной видеокарты такие ситуации могут встречаться чаще, но более мощных видеокарт не так уж много, и на фоне их цен экономия на процессоре выглядит странно — если это, конечно, не верный разогнанный Core i5-2500К, который много лет с любыми играми и при любой видеокарте справлялся вообще без вопросов:) И лишь сегодня его, может быть, захочется поменять и геймеру — благо уже есть на что.

Итого

Подытоживая наше тестирование, можем сказать: новые процессоры получились удачными, применяться они могут везде, где работали их предшественники, цена практически не изменилась. Из объективных недостатков — энергопотребление Core i7-8700K могло бы быть и пониже. Но понятно, что это легко «лечится» снижением частот, так что на базе этого кристалла можно хоть завтра выпускать ноутбучные процессоры, применимые не только в громоздких «игровых» моделях. А это тоже плюс, и для Intel, пожалуй, даже более весомый, чем хорошие результаты настольных модификаций. По сути, с рынком настольных процессоров ничего принципиально нового не случилось, ведь шестиядерные модели здесь были, и давно. Теперь они еще немного подешевели — только и всего. Вот ноутбук (полноценный, а не непонятные DTR-модификации на базе настольных или серверных процессоров) на шестиядернике — уже новый товар, способный несколько изменить рынок.

Из недостатков Coffee Lake — появление двух несовместимых платформ LGA1151. И если в одну сторону совместимости не очень жалко (разве что владельцев двухлетних плат, которым цинично обрубили возможность недорогой модернизации), то вот в другую… Фактически получается, что для новой платформы на данный момент нет не только недорогих плат, но и дешевых процессоров. А перевод тех же Pentium на новое исполнение, скорее всего, сильно «ударит» по отгрузкам старого. В общем, это проблема, по поводу которой крупные производители, как нам кажется, уже наверняка высказали Intel свое недовольство. Других проблем на данный момент не обнаружено. Это те процессоры, которых многие давно ждали — и вот, наконец, дождались:) Нам лишь кажется, что выйди эти процессоры вместо Kaby Lake — довольных бы оказалось больше, даже при тех же проблемах совместимости (вернее, ее отсутствия) между двумя версиями платформы.

ВведениеНовые процессоры компании Intel, относящиеся к семейству Ivy Bridge, присутствуют на рынке уже несколько месяцев, но между тем складывается впечатление, что их популярность не слишком высока. Мы неоднократно отмечали, что на фоне предшественников они не выглядят существенным шагом вперёд: их вычислительная производительность возросла незначительно, а частотный потенциал, раскрываемый через разгон, и вовсе, стал даже хуже чем у прошлого поколения Sandy Bridge. Отсутствие ажиотажного спроса на Ivy Bridge отмечает и Intel: жизненный цикл прошлого поколения процессоров, при производстве которого используется более старый технологический процесс с 32-нм нормами, продлевается и продлевается, а в отношении распространения новинок делаются не самые оптимистичные прогнозы. Конкретнее, к концу этого года Intel собирается довести долю Ivy Bridge в поставках десктопных процессоров лишь до 30 процентов, в то время как 60 процентов всех поставляемых CPU будет продолжать базироваться на микроархитектуре Sandy Bridge. Даёт ли это нам право не считать новые интеловские процессоры очередным успехом компании?

Отнюдь нет. Дело в том, что всё сказанное выше относится только к процессорам для настольных систем. Мобильный же рыночный сегмент отреагировал на выход Ivy Bridge совсем по-другому, ведь большинство из нововведений нового дизайна сделано именно с оглядкой на ноутбуки. Два основных преимущества Ivy Bridge перед Sandy Bridge: существенно снизившееся тепловыделение и энергопотребление, а также ускоренное графическое ядро с поддержкой DirectX 11 – в мобильных системах востребованы очень серьёзно. Благодаря этим своим достоинствам Ivy Bridge не только дал толчок к выходу ноутбуков с гораздо лучшим сочетанием потребительских характеристик, но и катализировал внедрение ультрапортативных систем нового класса – ультрабуков. Новый же технологический процесс с 22-нм нормами и трёхмерными транзисторами позволил снизить размеры и себестоимость изготовления полупроводниковых кристаллов, что, естественно, выступает ещё одним аргументом в пользу успешности нового дизайна.

В результате, в какой-то мере нерасположенными к Ivy Bridge могут быть лишь пользователи настольных компьютеров, причём недовольство связано не с какими-то серьёзными недостатками, а скорее с отсутствием кардинальных положительных перемен, которые, впрочем, никто и не обещал. Не стоит забывать, что в интеловской классификации процессоры Ivy Bridge относятся к такту «тик», то есть представляют собой простой перевод старой микроархитектуры на новые полупроводниковые рельсы. Впрочем, и сама Intel прекрасно понимает, что приверженцы настольных систем заинтригованы процессорами нового поколения несколько меньше, чем их коллеги – пользователи ноутбуков. Поэтому и не торопится проводить полномасштабное обновление модельного ряда. На данный момент в десктопном сегменте новая микроархитектура культивируется лишь в старших четырёхъядерных процессорах серий Core i7 и Core i5, причём модели, основанные на дизайне Ivy Bridge, соседствуют с привычными Sandy Bridge и не спешат отодвигать их на второй план. Более же агрессивное внедрение новой микроархитектуры ожидается лишь поздней осенью, а до тех пор вопрос о том, какие же четырёхъядерные процессоры Core предпочтительнее – второго (двухтысячной серии) или третьего (трёхтысячной серии) поколения, покупателям предлагается решать самостоятельно.

Собственно, для облегчения поисков ответа на этот вопрос мы и провели специальное тестирование, в котором решили сопоставить между собой процессоры Core i5, относящиеся к одной ценовой категории и предназначенные для использования в рамках одной и той же платформы LGA 1155, но основанные на разных дизайнах: Ivy Bridge и Sandy Bridge.

Третье поколение Intel Core i5: подробное знакомство

Ещё полтора года тому назад, с выпуском серии Core второго поколения, Intel ввела чёткую классификацию процессорных семейств, которой и придерживается по настоящий момент. Согласно этой классификации фундаментальными свойствами Core i5 являются четырёхъядерный дизайн без поддержки технологии «виртуальной многопоточности» Hyper-Threading и кэш-память третьего уровня объёмом 6 Мбайт. Эти особенности были присущи процессорам Sandy Bridge предыдущего поколения, они же соблюдаются и в новом варианте CPU с дизайном Ivy Bridge.

Это значит, что все процессоры серии Core i5, использующие новую микроархитектуру, сильно похожи друг на друга. Это в какой-то мере позволяет Intel унифицировать выпуск продукции: все сегодняшние Core i5 поколения Ivy Bridge используют совершенно идентичный 22-нм полупроводниковый кристалл степпинга E1, состоящий из 1,4 млрд. транзисторов и имеющий площадь порядка 160 кв. мм.

Несмотря на схожесть всех LGA 1155-процессоров Core i5 по целому ряду формальных характеристик, отличия между ними хорошо заметны. Новый технологический процесс с 22-нм нормами и трёхмерными (Tri-Gate) транзисторами позволил Intel понизить для новых Core i5 типичное тепловыделение. Если ранее Core i5 в LGA 1155-исполнении обладали тепловым пакетом 95 Вт, то для Ivy Bridge эта величина снижена до 77 Вт. Однако вслед за уменьшением типичного тепловыделения увеличения тактовых частот процессоров Ivy Bridge, входящих в семейство Core i5, не последовало. Старшие Core i5 прошлого поколения, также как и их сегодняшние последователи, имеют номинальные тактовые частоты, не превышающие 3.4 ГГц. Это значит, что в целом преимущество в производительности новых Core i5 над старыми обеспечивается лишь улучшениями в микроархитектуре, которые, применительно к вычислительным ресурсам CPU, малозначительны даже по словам самих разработчиков Intel.

Говоря же о сильных сторонах свежего процессорного дизайна, в первую очередь следует обратить внимание на изменения графического ядра. В процессорах Core i5 третьего поколения используется новая версия интеловского видеоускорителя – HD Graphics 2500/4000. Она обладает поддержкой программных интерфейсов DirectX 11, OpenGL 4.0 и OpenCL 1.1 и в некоторых случаях может предложить более высокую производительность в 3D и более быстрое кодирование видео высокого разрешения в формат H.264 посредством технологии Quick Sync.

Кроме того, процессорный дизайн Ivy Bridge содержит и ряд улучшений сделанных в «обвязке» - контроллерах памяти и шины PCI Express. В результате, системы, основанные на новых процессорах Core i5 третьего поколения, могут полноценно поддерживать видеокарты, использующие графическую шину PCI Express 3.0, а также способны тактовать DDR3-память на более высоких, чем их предшественники, частотах.

С момента своего первого дебюта на широкой публике до настоящего момента десктопное процессорное семейство Core i5 третьего поколения (то есть, процессоры Core i5-3000) осталось почти неизменным. В нём добавилась лишь пара промежуточных моделей, в результате чего, если не брать в рассмотрение экономичные варианты с урезанным тепловым пакетом, оно теперь состоит из пяти представителей. Если к этой пятёрке добавить пару основанных на микроархитектуре Ivy Bridge Core i7, мы получим полную десктопную линейку 22-нм процессоров в LGA 1155-исполнении:



Приведённая таблица, очевидно, нуждается в дополнении, более подробно описывающем функционирование технологии Turbo Boost, позволяющей процессорам самостоятельно увеличивать свою тактовую частоту, если это позволяют энергетические и температурные условия эксплуатации. В Ivy Bridge данная технология претерпела определённые изменения, и новые процессоры Core i5 способны авторазгоняться несколько агрессивнее, чем их предшественники, относящиеся к семейству Sandy Bridge. На фоне минимальных улучшений в микроархитектуре вычислительных ядер и отсутствия прогресса в частотах именно это зачастую способно обеспечить определённое превосходство новинок над предшественниками.



Предельная частота, которую процессоры Core i5 способны достигать при загрузке одного или двух ядер, превышает номинальную на 400 МГц. Если же нагрузка носит многопоточный характер, то Core i5 поколения Ivy Bridge, при условии их нахождения в благоприятных температурном режиме, могут поднимать свою частоту на 200 МГц выше номинального значения. При этом эффективность работы Turbo Boost для всех рассматриваемых процессоров совершенно одинакова, а отличия от CPU прошлого поколения заключаются в большем приросте частоты при загрузке двух, трёх и четырёх ядер: в Core i5 поколения Sandy Bridge предел авторазгона в таких условиях был на 100 МГц ниже.

Пользуясь показаниями диагностической программы CPU-Z, ознакомимся с представителями модельного ряда Core i5 с дизайном Ivy Bridge несколько подробнее.

Intel Core i5-3570K



Процессор Core i5-3570K – это венец всей линейки Core i5 третьего поколения. Он может похвастать не только самой высокой в серии тактовой частотой, но и, в отличие от всех остальных модификаций, имеет важную особенность, подчёркнутую литерой «K» в конце модельного номера – незаблокированный множитель. Это позволяет Intel не без оснований причислять Core i5-3570K к специализированным оверклокерским предложениям. Причём, на фоне старшего оверклокерского процессора для платформы LGA 1155, Core i7-3770K, Core i5-3570K выглядит очень соблазнительно благодаря куда более приемлемой для многих цене, что способно сделать из этого CPU чуть ли не самое лучшее рыночное предложение для энтузиастов.

При этом Core i5-3570K интересен не только своей предрасположенностью к разгону. Для прочих пользователей эта модель может быть интересна и благодаря тому, что в ней встроена старшая вариация графического ядра – Intel HD Graphics 4000, которая имеет существенно более высокую производительность, нежели графические ядра прочих представителей модельного ряда Core i5.

Intel Core i5-3570



То же самое название, что и у Core i5-3570K, но без финальной литеры, как бы намекает, что мы имеем дело с неоверклокерской версией предыдущего процессора. Так оно и есть: Core i5-3570 работает на точно таких же тактовых частотах, что и его более продвинутый собрат, но не позволяет востребованное среди энтузиастов и продвинутых пользователей безграничное изменение множителя.

Однако есть и ещё одно «но». В Core i5-3570 не попала быстрая версия графического ядра, так что этот процессор довольствуется младшей версией графики Intel HD Graphics 2500, которая, как мы покажем далее, существенно хуже по всем аспектам производительности.

В итоге, Core i5-3570 больше похож на Core i5-3550, чем на Core i5-3570K. На что у него есть вполне веские причины. Появившись чуть позднее первой группы представителей Ivy Bridge, этот процессор символизирует собой некое развитие семейства. Имея ту же самую рекомендованную стоимость, что и модель, стоящая в табели о рангах на строчку ниже, он как бы заменяют собой Core i5-3550.

Intel Core i5-3550



Убывание модельного номера в очередной раз указывает на снижение вычислительной производительности. В данном случае, Core i5-3550 медленнее Core i5-3570 из-за чуть меньшей тактовой частоты. Впрочем, разница составляет всего 100 МГц, или около 3 процентов, так что не стоит удивляться, что и Core i5-3570, и Core i5-3550 оценены Intel одинаково. Логика производителя заключается в том, что Core i5-3570 должен постепенно вытеснить с полок магазинов Core i5-3550. Поэтому-то по всем остальным характеристикам, кроме тактовой частоты, оба эти CPU полностью идентичны.

Intel Core i5-3470



Младшая пара процессоров Core i5, основанных на новом 22-нм ядре Ivy Bridge, имеет рекомендованную цену ниже 200-долларовой отметки. По близкой цене эти процессоры можно найти и в магазине. При этом Core i5-3470 мало в чём уступает старшим Core i5: на месте все четыре вычислительных ядра, 6-мегабайтный кэш третьего уровня и тактовая частота свыше 3-гигагерцовой отметки. Intel избрала для дифференциации модификаций в обновлённом ряду Core i5 100-мегагерцовый шаг тактовой частоты, так что ожидать существенного различия между моделями в быстродействии в реальных задачах попросту неоткуда.

Впрочем, Core i5-3470 дополнительно отличается от старших собратьев и по графической производительности. Видеоядро HD Graphics 2500 работает в нём на чуть более низкой частоте: 1.1 ГГц против 1.15 ГГц у более дорогих модификаций процессоров.

Intel Core i5-3450



Самая младшая в иерархии Intel вариация процессора Core i5 третьего поколения, Core i5-3450, подобно Core i5-3550, постепенно уходит с рынка. Процессор Core i5-3450 плавно заменяется на описанный выше Core i5-3470, который работает на слегка более высокой таковой частоте. Других отличий между этими CPU нет.

Как мы тестировали

Для получения полного расклада производительности современных Core i5, нами были подробно протестированы все пять описанных выше Core i5 трёхтысячной серии. Основными соперниками для этих новинок выступили более ранние LGA 1155-процессоры аналогичного класса, относящиеся к поколению Sandy Bridge: Core i5-2400 и Core i5-2500K. Их стоимость вполне позволяет противопоставлять эти CPU новым Core i5 трёхтысячной серии: Core i5-2400 имеет такую же рекомендованную цену, как Core i5-3470 и Core i5-3450; а Core i5-2500K продаётся чуть дешевле Core i5-3570K.

Кроме этого, на диаграммы мы поместили результаты тестов процессоров более высокого класса Core i7-3770K и Core i7-2700K, а также процессора, предлагаемого компанией-конкурентом, AMD FX-8150. Кстати, весьма показательно, что после очередных снижений цен этот старший представитель семейства Bulldozer стоит как самые дешёвые Core i5 трёхтысячной серии. То есть, AMD уже не питает никаких иллюзий по поводу возможности противопоставления собственного восьмиядерника интеловским CPU класса Core i7.

В итоге, состав тестовых систем включал следующие программные и аппаратные компоненты:

Процессоры:

AMD FX-8150 (Zambezi, 8 ядер, 3.6-4.2 ГГц, 8 Мбайт L3);
Intel Core i5-2400 (Sandy Bridge, 4 ядра, 3.1-3.4 ГГц, 6 Мбайт L3);
Intel Core i5-2500K (Sandy Bridge, 4 ядра, 3.3-3.7 ГГц, 6 Мбайт L3);
Intel Core i5-3450 (Ivy Bridge, 4 ядра, 3.1-3.5 ГГц, 6 Мбайт L3);
Intel Core i5-3470 (Ivy Bridge, 4 ядра, 3.2-3.6 ГГц, 6 Мбайт L3);
Intel Core i5-3550 (Ivy Bridge, 4 ядра, 3.3-3.7 ГГц, 6 Мбайт L3);
Intel Core i5-3570 (Ivy Bridge, 4 ядра, 3.4-3.8 ГГц, 6 Мбайт L3);
Intel Core i5-3570K (Ivy Bridge, 4 ядра, 3.4-3.8 ГГц, 6 Мбайт L3);
Intel Core i7-2700K (Sandy Bridge, 4 ядра + HT, 3.5-3.9 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3.5-3.9 ГГц, 8 Мбайт L3).

Процессорный кулер: NZXT Havik 140;
Материнские платы:

ASUS Crosshair V Formula (Socket AM3+, AMD 990FX + SB950);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77 Express).

Память: 2 x 4 GB, DDR3-1866 SDRAM, 9-11-9-27 (Kingston KHX1866C9D3K2/8GX).
Графические карты:

AMD Radeon HD 6570 (1 Гбайт/128-бит GDDR5, 650/4000 МГц);
NVIDIA GeForce GTX 680 (2 Гбайт/256-бит GDDR5, 1006/6008 МГц).

Жёсткий диск: Intel SSD 520 240 GB (SSDSC2CW240A3K5).
Блок питания: Corsair AX1200i (80 Plus Platinum, 1200 Вт).
Операционная система: Microsoft Windows 7 SP1 Ultimate x64.
Драйверы:

AMD Catalyst 12.8 Driver;
AMD Chipset Driver 12.8;
Intel Chipset Driver 9.3.0.1019;
Intel Graphics Media Accelerator Driver 15.26.12.2761;
Intel Management Engine Driver 8.1.0.1248;
Intel Rapid Storage Technology 11.2.0.1006;
NVIDIA GeForce 301.42 Driver.

При тестировании системы, основанной на процессоре AMD FX-8150, патчи операционной системы KB2645594 и KB2646060 были установлены.

Видеокарта NVIDIA GeForce GTX 680 использовалась при тестировании скорости работы процессоров в системе с дискретной графикой, AMD Radeon HD 6570 же применялась в качестве ориентира при исследовании производительности интегрированной графики.

Процессор Intel Core i5-3570 в тестировании систем, снабжённых дискретной графикой, участия не принимал, так как с точки зрения вычислительной производительности он полностью идентичен Intel Core i5-3570K, работающему на таких же тактовых частотах.

Вычислительная производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тест Bapco SYSmark 2012, моделирующий работу пользователя в распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера.



В целом, процессоры Core i5, относящиеся к трёхтысячной серии, демонстрируют вполне ожидаемую производительность. Они быстрее, чем Core i5 прошлого поколения, причём процессор Core i5-2500K, который является почти самым быстрым Core i5 с дизайном Sandy Bridge, уступает по быстродействию даже младшей из новинок, Core i5-3450. Однако при этом до Core i7 свежие Core i5 дотянуться не в состоянии, сказывается отсутствие в них технологии Hyper-Threading.

Более глубокое понимание результатов SYSmark 2012 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: ABBYY FineReader Pro 10.0, Adobe Acrobat Pro 9, Adobe Flash Player 10.1, Microsoft Excel 2010, Microsoft Internet Explorer 9, Microsoft Outlook 2010, Microsoft PowerPoint 2010, Microsoft Word 2010 и WinZip Pro 14.5.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты компании Adobe: Photoshop CS5 Extended, Premiere Pro CS5 и After Effects CS5.



Web Development - сценарий, в рамках которого моделируется создание web-сайта. Используются приложения: Adobe Photoshop CS5 Extended, Adobe Premiere Pro CS5, Adobe Dreamweaver CS5, Mozilla Firefox 3.6.8 и Microsoft Internet Explorer 9.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию рыночных тенденций, которые выполняются в Microsoft Excel 2010.



Сценарий 3D Modeling всецело посвящён созданию трёхмерных объектов и рендерингу статичных и динамических сцен с использованием Adobe Photoshop CS5 Extended, Autodesk 3ds Max 2011, Autodesk AutoCAD 2011 и Google SketchUp Pro 8.



В последнем сценарии, System Management, выполняется создание бэкапов и установка программного обеспечения и апдейтов. Здесь задействуются несколько различных версий Mozilla Firefox Installer и WinZip Pro 14.5.



В большинстве сценариев мы сталкиваемся с типичной картиной, когда Core i5 трёхтысячной серии быстрее своих предшественников, но уступают любым Core i7, как основанным на микроархитектуре Ivy Bridge, так и на Sandy Bridge. Однако существуют и случаи не совсем типичного поведения процессоров. Так, в сценарии Media Creation процессору Core i5-3570K удаётся превзойти Core i7-2700K; при использовании пакетов трёхмерного моделирования неожиданно хорошо проявляет себя восьмиядерный AMD FX-8150; а в сценарии System Management, генерирующим в основном однопоточную нагрузку, процессор прошлого поколения Core i5-2500K почти догоняет по быстродействию свежий Core i5-3470.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы стараемся проводить испытания так, чтобы по возможности снять нагрузку с видеокарты: выбираются наиболее процессорозависимые игры, а тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. То есть, полученные результаты дают возможность оценить не столько уровень fps, достижимый в системах с современными видеокартами, сколько то, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе. Следовательно, основываясь на приведённых результатах, вполне можно строить догадки о том, как будут вести себя процессоры и в будущем, когда на рынке появятся более быстрые варианты графических ускорителей.


















В наших многочисленных предшествующих тестированиях мы неоднократно характеризовали процессоры семейства Core i5 как хорошо подходящие для геймеров. Не намерены отказываться от этой позиции мы и теперь. В игровых применениях Core i5 сильны благодаря эффективной микроархитектуре, четырёхъядерному дизайну и высоким тактовым частотам. Отсутствие же у них поддержки технологии Hyper-Threading способно сыграть добрую службу в плохо оптимизированных под многопоточность играх. Впрочем, количество таких игр из числа актуальных уменьшается с каждым днём, что мы и видим по приведённым результатам. Core i7, основанный на дизайне Ivy Bridge, на всех диаграммах находится выше аналогичных по внутреннему устройству Core i5. В итоге, игровая производительность трёхтысячной серии Core i5 оказывается на вполне ожидаемом уровне: эти процессоры однозначно лучше Core i5 двухтысячной серии, а иногда даже способны составить конкуренцию и Core i7-2700K. Параллельно отметим, что старший процессор компании AMD не выдерживает с современными интеловскими предложениями никакой конкуренции: его отставание по игровой производительности без всяких преувеличений можно назвать катастрофическим.

В дополнение к игровым тестам приведём и результаты синтетического бенчмарка Futuremark 3DMark 11, запущенного с профилем Performance.






Ничего принципиально нового не показывает и синтетический тест Futuremark 3DMark 11. Производительность Core i5 третьего поколения ложится ровно между Core i5 с прошлым дизайном и любыми процессорами Core i7, обладающими поддержкой технологии Hyper-Threading и немного более высокими тактовыми частотами.

Тесты в приложениях

Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1.1 Гбайт.



В последних версиях архиватора WinRAR была существенно улучшена поддержка многопоточности, так что теперь скорость архивации стала серьёзно зависеть от количества имеющихся в распоряжении CPU вычислительных ядер. Соответственно, процессоры Core i7, усиленные технологией Hyper-Threading, и восьмиядерный процессор AMD FX-8150 демонстрируют здесь наилучшее быстродействие. Что же касается серии Core i5, то с ней всё как всегда. Core i5 с дизайном Ivy Bridge однозначно лучше старых, причём преимущество новинок над старичками составляет порядка 7 процентов для моделей, имеющих идентичную номинальную частоту.

Производительность процессоров при криптографической нагрузке измеряется встроенным тестом популярной утилиты TrueCrypt, использующим «тройное» шифрование AES-Twofish-Serpent. Следует отметить, что данная программа не только способна эффективно загружать работой любое количество ядер, но и поддерживает специализированный набор инструкций AES.



Всё как обычно, только процессор FX-8150 вновь находится в верхней части диаграммы. В этом ему помогает возможность выполнения восьми вычислительных потоков одновременно и хорошая скорость исполнения целочисленных и битовых операций. Что же касается Core i5 трёхтысячной серии, то они вновь безоговорочно превосходят своих предшественников. Причём, разница в производительности CPU с одинаковой декларируемой номинальной частотой достаточно существенна и составляет порядка 15 процентов в пользу новинок с микроархитектурой Ivy Bridge.

С выходом восьмой версии популярного пакета для научных вычислений Wolfram Mathematica мы решили вернуть его в число используемых тестов. Для оценки производительности систем в нём используется встроенный в эту систему бенчмарк MathematicaMark8.



Wolfram Mathematica традиционно относится к числу приложений, плохо «переваривающих» технологию Hyper-Threading. Именно поэтому на приведённой диаграмме первую позицию занимает Core i5-3570K. Да и результаты прочих Core i5 трёхтысячной серии весьма недурны. Все эти процессоры не только обгоняют своих предшественников, но и оставляют позади старший Core i7 с микроархитектурой Sandy Bridge.

Измерение производительности в Adobe Photoshop CS6 мы проводим с использованием собственного теста, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, включающий типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



Новая микроархитектура Ivy Bridge обеспечивает примерно 6-процентное превосходство аналогичных по тактовой частоте Core i5 третьего поколения над своими более ранними собратьями. Если же сопоставить между собой процессоры с одинаковой стоимостью, то носители новой микроархитектуры попадают в ещё более выгодное положение, отвоёвывая у Core i5 двухтысячной серии более 10 процентов быстродействия.

Производительность в Adobe Premiere Pro CS6 тестируется измерением времени рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Нелинейный видеомонтаж – хорошо распараллеливаемая задача, так что до Core i7-2700K новые Core i5 с дизайном Ivy Bridge дотянуться не в состоянии. Зато своих предшественников-одноклассников, использующих микроархитектуру Sandy Bridge, они превосходят по скорости примерно на 10 процентов (при сравнении моделей с одинаковой тактовой частотой).

Для измерения скорости перекодирования видео в формат H.264 используется x264 HD Benchmark 5.0, основанный на измерении времени обработки исходного видео в формате MPEG-2, записанного в разрешении 1080p с потоком 20 Мбит/сек. Следует отметить, что результаты этого теста имеют огромное практическое значение, так как используемый в нём кодек x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч.






Картина при перекодировании видеоконтента высокого разрешения вполне привычна. Преимущества микроархитектуры Ivy Bridge выливаются в примерно 8-10-процентное превосходство новых Core i5 над старыми. Необычно же выглядит высокий результат восьмиядерного FX-8150, который при втором проходе кодирования обгоняет даже Core i5-3570K.

По просьбам наших читателей используемый набор приложений пополнился и ещё одним бенчмарком, показывающим скорость работы с видеоконтентом высокого разрешения, - SVPmark3. Это специализированный тест производительности системы при работе с пакетом SmoothVideo Project, направленным на повышение плавности видео путём добавления в видеоряд новых кадров, содержащих промежуточные положения объектов. Приведённые в диаграмме числа – это результат бенчмарка на реальных FullHD-видеофрагментах без привлечения к расчётам мощностей графической карты.



Диаграмма очень похожа на результаты второго прохода перекодирования кодеком x264. Это недвусмысленно намекает, что большинство задач, связанных с обработкой видеоконтента высокого разрешения, создают примерно одинаковую по своему характеру вычислительную нагрузку.

Вычислительную производительность и скорость рендеринга в Autodesk 3ds max 2011 мы измеряем, прибегая к услугам специализированного теста SPECapc for 3ds Max 2011.






Честно говоря, ничего нового нельзя сказать и про производительность, наблюдаемую при финальном рендеринге. Распределение результатов можно назвать стандартным.

Тестирование скорости финального рендеринга в Maxon Cinema 4D выполняется путём использования специализированного теста Cinebench 11.5.



Ничего нового не показывает и диаграмма результатов Cinebench. Новые Core i5 трёхтысячной серии в очередной раз оказывается заметно лучше своих предшественников. Даже самый младший из них, Core i5-3450, уверенно обходит Core i5-2500K.

Энергопотребление

Одним из основных плюсов 22-нм техпроцесса, применяемого для выпуска процессоров поколения Ivy Bridge, Intel называет уменьшившееся тепловыделение и энергопотребление полупроводниковых кристаллов. Это нашло отражение и в официальных спецификациях Core i5 третьего поколения: для них установлен не 95-ваттный, как раньше, а 77-ваттный тепловой пакет. Так что превосходство новых Core i5 над предшественниками в экономичности сомнений не вызывает. Но каков масштаб этого выигрыша на практике? Следует ли рассматривать экономичность трёхтысячной серии Core i5 их серьёзным конкурентным преимуществом?

Чтобы ответить на эти вопросы, мы провели специальное тестирование. Используемый нами в тестовой системе новый цифровой блок питания Corsair AX1200i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для наших измерений. На следующих ниже графиках, если иное не оговаривается отдельно, приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД же самого блока питания в данном случае не учитывается. Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.6.4-AVX. Кроме того, для правильной оценки энергопотребления в простое мы активировали турбо-режим и все имеющиеся энергосберегающие технологии: C1E, C6 и Enhanced Intel SpeedStep.



В состоянии простоя системы со всеми принявшими участие в тестах процессорами показывают примерно одинаковое энергопотребление. Конечно, оно не полностью идентично, различия на уровне десятых долей ватта имеют место, но мы решили не переносить их на диаграмму, так как столь несущественная разница скорее относится к погрешности измерений, нежели к наблюдаемым физическим процессам. Кроме того, в условиях близких величин потребления процессоров серьёзное влияние на общее энергопотребление начинает оказывать эффективность и настройки преобразователя питания материнской платы. Поэтому, если вы действительно обеспокоены величиной потребления в покое, в первую следует искать материнские платы с наиболее эффективным преобразователем питания, а процессор, как показывают полученные нами результаты, из числа LGA 1155-совместимых моделей, может подойти любой.



Однопоточная нагрузка, при которой у процессоров с турбо-режимом частота повышается до максимальных значений, приводит к заметным различиям в потреблении. В первую очередь в глаза бросаются совершенно нескромные аппетиты AMD FX-8150. Что же касается LGA 1155-моделей CPU, то те из них, что базируются на 22-нм полупроводниковых кристаллах, действительно заметно экономичнее. Различие в потреблении четырёхъядерных Ivy Bridge и Sandy Bridge, работающих на аналогичной тактовой частоте, составляет порядка 4-5 Вт.



Полная многопоточная вычислительная нагрузка усугубляет различия в потреблении. Система, оснащённая процессорами Core i5 третьего поколения, выигрывает в экономичности у аналогичной платформы с процессорами на предыдущем дизайне порядка 18 Вт. Это идеально коррелирует с разницей в теоретических показателях расчетного тепловыделения, заявляемых для своих процессоров компанией Intel. Таким образом, с точки зрения соотношения производительности на ватт процессорам Ivy Bridge среди CPU для настольных компьютеров нет равных.

Производительность графического ядра

Рассматривая современные процессоры для платформы LGA 1155, следует уделить внимание и встроенным в них графическим ядрам, которые с внедрением микроархитектуры Ivy Bridge стали более быстрыми и более совершенными с точки зрения имеющихся возможностей. Однако вместе с этим Intel предпочитает устанавливать в свои процессоры для настольного сегмента урезанную версию видеоядра с сокращённым с 16 до 6 числом исполнительных устройств. Фактически, полноценная графика присутствует лишь в процессорах Core i7 и в Core i5-3570K. Большинство же десктопных Core i5 трёхтысячной серии, очевидно, окажутся в графических 3D-приложениях достаточно слабы. Впрочем, вполне вероятно, что даже имеющаяся урезанная графическая мощность удовлетворит некоторое количество пользователей, не нацеленных рассматривать встроенную графику как трёхмерный видеоускоритель.

Начать тестирование встроенной графики мы решили с теста 3DMark Vantage. Результаты, полученные в разных версиях 3DMark, – очень популярная метрика для оценки средневзвешенной игровой производительности видеокарт. Выбор же версии Vantage обусловлен тем, что она использует DirectX десятой версии, поддерживаемой всеми принимающими в испытаниях видеоускорителями, в том числе и графикой процессоров Core с дизайном Sandy Bridge. Заметим, что помимо полного набора процессоров семейства Core i5, работающих со своими интегрированными графическими ядрами, мы включили в тесты и показатели производительности системы на базе Core i5-3570K с дискретной графической картой Radeon HD 6570. Эта конфигурация будет служить для нас своеобразным ориентиром, позволяющим представить себе место интеловских графических ядер HD Graphics 2500 и HD Graphics 4000 в мире дискретных видеоускорителей.






Устанавливаемое Intel в большинство своих процессоров для настольных компьютеров графическое ядро HD Graphics 2500 по своей 3D-производительности оказывается похоже на HD Graphics 3000. Зато старший вариант интеловской графики из процессоров Ivy Bridge, HD Graphics 4000, выглядит огромным шагом вперёд, его производительность более чем вдвое превосходит скорость лучшего встроенного ядра прошлого поколения. Впрочем, любой из имеющихся вариантов Intel HD Graphics пока ещё нельзя назвать обладающим приемлемой 3D-производительностью по меркам настольных систем. Например, видеокарта Radeon HD 6570, которая относится к нижнему ценовому сегменту и стоит порядка $60-70, способна предложить существенно лучшее быстродействие.

В дополнение к синтетическому 3DMark Vantage, мы провели и несколько тестов в реальных игровых приложениях. В них мы использовали низкие настройки качества графики и разрешение 1650x1080, которое на данный момент мы считаем минимальным из интересных пользователям десктопов.












В целом, в играх наблюдается примерно одинаковая картина. Встроенная в Core i5-3570K старшая версия графического ускорителя обеспечивает среднее число кадров в секунду на достаточно неплохом (для интегрированного решения) уровне. Однако Core i5-3570K остаётся единственным процессором из Core i5 третьего поколения, видеоядро которого способно выдавать приемлемую графическую производительность, которой, при некоторых послаблениях в качестве картинки, может хватать для комфортного восприятия значительного числа нынешних игр. Все прочие CPU этого класса, в которых используется ускоритель HD Graphics 2500 с уменьшенным количеством исполнительных устройств, выдают почти вдвое более низкую скорость, чего по современным меркам явно недостаточно.

Преимущество графического ядра HD Graphics 4000 над встроенным ускорителем прошлого поколения HD Graphics 3000 колеблется в достаточно широких пределах и в среднем составляет около 90 процентов. С предыдущим флагманским интегрированным решением легко может сравниться младшая версия графики из Ivy Bridge, HD Graphics 2500, которая устанавливается в большинство десктопных процессоров Core i5 трёхтысячной серии. Что же касается прошлого варианта общеупотребительного графического ядра, HD Graphics 2000, то его производительность теперь выглядит крайне низкой, в играх оно отстаёт от того же HD Graphics 2500 в среднем на 50-60 процентов.

Иными словами, 3D-производительность графического ядра процессоров Core i5 действительно сильно возросла, но, по сравнению с тем количеством кадров, которое способен выдать ускоритель Radeon HD 6570, всё это кажется мышиной вознёй. Даже встроенный в Core i5-3570K ускоритель HD Graphics 4000 представляет собой не слишком хорошую альтернативу десктопным 3D-ускорителям нижнего уровня, более же распространённый вариант интеловской графики, можно сказать, вообще для большинства игр неприменим.

Однако далеко не все пользователи рассматривают встроенные в процессоры видеоядра как игровые трёхмерные ускорители. Значительная доля потребителей заинтересована в HD Graphics 4000 и HD Graphics 2500 благодаря их медийным возможностям, альтернатив которым в нижней ценовой категории попросту нет. Здесь в первую очередь мы имеем в виду технологию Quick Sync, предназначенную для быстрого аппаратного кодирования видео в формат AVC/H.264, вторая версия которой реализована в процессорах семейства Ivy Bridge. Поскольку в новых графических ядрах Intel обещает существенное увеличение скорости транскодирования, мы отдельно протестировали и функционирование Quick Sync.

Во время практических испытаний мы измерили время выполнения перекодирования одного 40-минутного эпизода популярного сериала, закодированного в формате 1080p H.264 с битрейтом 10 Мбит/сек для просмотра на Apple iPad2 (H.264, 1280x720, 3Mbps). Для тестов использовалась поддерживающая технологию Quick Sync утилита Cyberlink Media Espresso 6.5.2830.



Ситуация здесь отличается от того, что наблюдалось в играх, кардинально. Если раньше Intel не дифференцировал Quick Sync в процессорах с разными версиями графического ядра, то теперь всё поменялось. Эта технология в HD Graphics 4000 и в HD Graphics 2500 работает с примерно вдвое отличающейся скоростью. Причём, обычные процессоры Core i5 трёхтысячной серии, в которые устанавливается ядро HD Graphics 2500, перекодируют видео высокого разрешения посредством Quick Sync примерно с той же производительностью, что и их предшественники. Прогресс же в быстродействии виден только по результатам Core i5-3570K, где присутствует «продвинутое» графическое ядро HD Graphics 4000.

Разгон

Разгон процессоров Core i5, относящихся к поколению Ivy Bridge, может идти по двум принципиально различным сценариям. Первый из них касается разгона процессора Core i5-3570K, изначально ориентированного на оверклокинг. Этот CPU имеет незаблокированный множитель, и увеличение его частоты выше номинальных значений выполняется по типичному для платформы LGA 1155 алгоритму: посредством наращивания коэффициента умножения поднимаем частоту работы процессора и при необходимости добиваемся стабильности путём подачи на CPU повышенного напряжения и улучшения его охлаждения.

Без поднятия напряжения питания наш экземпляр процессора Core i5-3570K разогнался до 4.4 ГГц. Для обеспечения стабильности в этом режиме потребовалось лишь простое переключение функции материнской платы Load-Line Calibration в положение High.


Дополнительное увеличение напряжения питания процессора до 1.25 В позволило достичь стабильной работоспособности на более высокой частоте - 4.6 ГГц.


Это – вполне типичный результат для CPU поколения Ivy Bridge. Такие процессоры разгоняются обычно немного хуже, чем Sandy Bridge. Причина, как предполагается, кроется в последовавшем за внедрением 22-нм технологии производства уменьшении площади полупроводникового процессорного кристалла, ставящем вопрос о необходимости увеличения плотности теплового потока при охлаждении. В то же время используемый Intel внутри процессоров термоинтерфейс, как и обычно применяемые способы снятия тепла с поверхности процессорной крышки, решению этой проблемы не способствуют.

Впрочем, как бы то ни было, разгон до 4.6 ГГц – очень неплохой результат, особенно если принять во внимание тот факт, что процессоры Ivy Bridge на одинаковой с Sandy Bridge тактовой частоте выдают примерно на 10 процентов лучшее быстродействие благодаря своим микроархитектурным усовершенствованиям.

Второй сценарий разгона касается остальных процессоров Core i5, которые свободного множителя лишены. Хотя платформа LGA 1155 относится к увеличению частоты базового тактового генератора крайне отрицательно, и теряет стабильность уже при установке формирующей частоты на 5 процентов выше номинально значения, разгонять процессоры Core i5, не относящиеся к K-серии, всё-таки можно. Дело в том, что Intel позволяет ограниченно увеличивать и их множитель, наращивая его не более чем на 4 единицы выше номинала.



Учитывая же, что при этом сохраняется работоспособность технологии Turbo Boost, которая для Core i5 с дизайном Ivy Bridge допускает 200-мегагерцовый разгон даже при загрузке всех процессорных ядер, тактовую частоту в общем итоге можно «накрутить» на 600 МГц выше штатного значения. Иными словами, Core i5-3570 можно разогнать до 4.0 ГГц, Core i5-3550 – до 3.9 ГГц, Core i5-3470 – до 3.8 ГГц, а Core i5-3450 – до 3.7 ГГц. Что мы успешно подтвердили в ходе наших практических экспериментов.

Core i5-3570:


Core i5-3550:


Core i5-3470:


Core i5-3450:


Надо сказать, что такой ограниченный разгон выполняется даже проще, чем в случае процессора Core i5-3570K. Не столь существенное приращение тактовой частоты не влечёт за собой появление проблем со стабильностью даже при использовании номинального напряжения питания. Поэтому, скорее всего, единственное, что потребуется для оверклокинга процессоров Ivy Bridge линейки Core i5, не относящихся к K-серии, это – поменять значение множителя в BIOS материнской платы. Достигаемый же при этом результат, хотя и нельзя назвать рекордным, скорее всего вполне устроит подавляющее большинство неискушённых пользователей.

Выводы

Мы уже неоднократно говорили о том, что микроархитектура Ivy Bridge стала удачным эволюционным обновлением процессоров Intel. Производственная полупроводниковая технология с 22-нм нормами и многочисленные микроархитектурные улучшения сделали новинки как более быстродействующими, так и более экономичными. Это относится к любым Ivy Bridge вообще и к рассмотренным в этом обзоре десктопным процессорам Core i5 трёхтысячной серии в частности. Сопоставляя новую линейку процессоров Core i5 с тем, что мы имели год назад, нетрудно заметить целый букет существенных улучшений.

Во-первых, новые Core i5, основанные на дизайне Ivy Bridge, стали производительнее своих предшественников. Несмотря на то, что Intel не прибегла к увеличению тактовых частот, преимущество новинок составляет порядка 10-15 процентов. Даже самый медленный из десктопных Core i5 третьего поколения, процессор Core i5-3450, обгоняет Core i5-2500K в большинстве тестов. А старшие представители свежей линейки порой могут соперничать с процессорами более высокого класса, Core i7, основанными на микроархитектуре Sandy Bridge.

Во-вторых, новые Core i5 стали заметно экономичнее. Их тепловой пакет установлен в 77 Ватт, и это находит отражение на практике. При любой нагрузке компьютеры, использующие Core i5 с дизайном Ivy Bridge, потребляют на несколько ватт меньше, чем аналогичные системы, где используются CPU класса Sandy Bridge. Причём, при предельной вычислительной нагрузке выигрыш может достигать почти двух десятков ватт, а это – весьма существенная экономия по современным меркам.

В-третьих, в новых процессорах нашло место существенно улучшенное графическое ядро. Младший вариант графического ядра процессоров Ivy Bridge работает по меньшей мере не хуже, чем HD Graphics 3000 из старших процессоров Core второго поколения, и к тому же, поддерживая DirectX 11, имеет более современные возможности. Что же касается флагманского интегрированного ускорителя HD Graphics 4000, который используется в процессоре Core i5-3570K, то он даже позволяет получать вполне приемлемую частоту кадров в достаточно современных играх, правда, при значительных послаблениях в настройках качества.

Единственный спорный момент, который мы заметили у Core i5 третьего поколения, это – слегка более низкий разгонный потенциал, нежели у процессоров класса Sandy Bridge. Однако этот недостаток проявляется лишь в единственной оверклокерской модели Core i5-3570K, где изменение коэффициента умножения искусственно не ограничивается сверху, и к тому же, он вполне компенсируется более высокой удельной производительностью, развиваемой микроархитектурой Ivy Bridge.

Иными словами, мы не видим ни одной причины, по которой, выбирая процессор среднего класса для платформы LGA 1155, предпочтение должно быть отдано «старичкам», использующим полупроводниковые кристаллы поколения Sandy Bridge. Тем более что цены, установленные Intel на более прогрессивные модификации Core i5, вполне гуманны и близки к стоимости устаревающих процессоров прошлого поколения.

В современных центральных процессорах непросто разобраться даже специалисту: выпускается множество разнообразных моделей, а их названия как будто специально призваны запутать покупателя.

И если о сериях Core и Core 2 за почти пять лет с момента их появления написано предостаточно, то о чипах трёх новейших семейств Core i3, i5 и i7 практически нет систематизированной информации, адресованной потребителю, а не эксперту.

В чём же заключаются особенности архитектуры новых процессоров, отличия от предшественников?
Наконец, чем они лучше ещё вполне актуальных Core 2 Duo и Quad ?

Все процессоры семейства «i» построены на основе новейшей микроархитектуры Nehalem, пришедшей на смену Core в конце 2008 года.
Архитектура, названная в честь одного из индейских племён, представляет собой эволюционное развитие Core и отличается от неё несколькими принципиальными нововведениями: размещением всех ядер на одном кристалле, встроенным двух- или трёхканальным контроллером оперативной памяти DDR3, системными шинами QPI или DMI, заменившими FSB, кэш-памятью третьего уровня, общей для всех ядер, а также возможностью встраивания в чип графического ядра.

В Nehalem впервые реализован набор инструкций SSE 4.2 , их энергопотребление на 30% меньше аналогов Core при сравнимой производительности.
Кроме того, в новые чипы вернулась технология Hyper-Threading, позволяющая представить одно физическое ядро как два виртуальных.
Первые Nehalem выпускались по 45-нанометровой технологии, а в 2010 году начался постепенный переход на 32-нанометровый техпроцесс.
Для установки процессоров требуется системная плата с разъёмами LGA1156 или LGA1366.

На базе архитектуры Nehalem в настоящее время выпускается четыре типа десктопных процессоров, известных под кодовыми названиями Bloomfield, Clarkdale, Gulftown и Lynnfield.
Из них Clarkdale - двуядерные и выпускающиеся по 32-нм технологии, Bloomfield и Lynnfield - четырёхъядерные и производящиеся по 45-нм техпроцессу, а Gulftown - 32-нм шестиядерные чипы.

Основная масса двухъядерных i3 и i5 - это Clarkdale, четырёхъядерные i5 - это Lynnfield, четырёхъядерные i7 - это Bloomfield и Lynnfield, а шестиядерный i7 (он пока один, это 980X) - Gulftown.


Блок-схема процессора Lynnfield

В чём заключается разница между четырёхъядерными Bloomfield и Lynnfield?
Прежде всего, в Bloomfield встроен трёхканальный контроллер памяти, а в Lynnfield - двухканальный, что ощутимо сказывается на цене.
В Bloomfield реализована высокоскоростная системная шина QPI (25,6 Гбит/с), которая используется для связи с северным мостом, обеспечивающим работу интерфейса PCI Express 2.0, к которому подключаются графические ускорители.

В Lynnfield применяется шина DMI (2 Гбит/с), а контроллер графической шины PCI Express 2.0 встроен в сам процессор, что устраняет принципиальную необходимость в северном мосте и позволяет применить одночиповый набор системной логики - это и было сделано в чипсете Intel P55 Express.
Наконец, чипы Lynnfield рассчитаны на установку в «массовый» разъём LGA1156, а Bloomfield - в сокет LGA1366, зарезервированный для топовых систем.

Кстати, о чипсете Intel P55 Express: этот набор системной логики был спроектирован специально для Lynnfield, тогда же появился и процессорный разъём LGA1156.
Материнские платы на P55 без проблем работают и с двухъядерными Core i3/i5 (Clarkdale), но есть один нюанс: этот чипсет не поддерживает встроенное в процессор графическое ядро (о нём - чуть ниже), то есть в любом случае придётся пользоваться дискретным видеоускорителем.

Со встроенным графическим ядром работают чипсеты H57, H55 и Q57, представленные одновременно с процессорами Clarksdale.
С основными характеристиками всех четырёх наборов логики можно ознакомиться по таблице.

У процессоров Nehalem довольно запутанная система маркировки и даже название семейства мало что говорит о конкретном чипе, поскольку у них могут быть разные архитектуры и возможности.
Поэтому давайте подробно разберём их возможности и функциональность.

Двухъядерные процессоры Core i3 и i5, четырёхъядерные и шестиядерные Core i5 и i7 отличаются от предшественников прежде всего тем, что у них, как и у чипов AMD, имеются встроенные контроллеры оперативной памяти DDR3 и внешняя шина, работающая на скорости 133 МГц.
Для сравнения, Core 2 Duo (сокет LGA775) совместимы как с памятью DDR3, так и с DDR2, поскольку там контроллер памяти реализован на уровне системной логики.

Кроме того, двухъядерные Core i3 и i5 имеют встроенные в чип графические ускорители GMA HD.
Их возможности можно вкратце охарактеризовать так: если вы просто хотите смотреть HD-видео, и вас не интересуют самые свежие трёхмерные компьютерные игры, то производительности встроенного в процессор графического ядра будет вполне достаточно.

По оценкам экспертов, GMA HD несколько быстрее встраиваемых в чипсеты графических ядер Intel GMA предыдущих поколений.

Ядро GMA HD обеспечивает одновременное декодирование двух потоков HD-видео (например, для режимов «картинка-в-картинке» или «картинка-и-картинка») и одновременную их передачу на разные цифровые выходы.
Поддерживается 36-битная глубина цвета и расширенное цветовое пространство xvYCC, предусмотрена возможность передачи звуковых потоков Dolby True HD и DTS-HD Master Audio.

Заявлена поддержка программных интерфейсов DirectX 10 (Shader Model 3.0) и Open GL 2.1 .
Под кадровый буфер может выделяться до 1,7 Гб (!) системной памяти.
Графика полностью совместима с универсальным цифровым интерфейсом HDMI 1.3 .

Драйвер AMD Radeon Software Adrenalin Edition 19.9.2 Optional

Новая версия драйвера AMD Radeon Software Adrenalin Edition 19.9.2 Optional повышает производительность в игре «Borderlands 3» и добавляет поддержку технологии коррекции изображения Radeon Image Sharpening.

Накопительное обновление Windows 10 1903 KB4515384 (добавлено)

10 сентября 2019 г. Microsoft выпустила накопительное обновление для Windows 10 версии 1903 - KB4515384 с рядом улучшений безопасности и исправлением ошибки, которая нарушила работу Windows Search и вызвала высокую загрузку ЦП.

Процессоры Intel Core i5 — в числе самых популярных на IT-рынке в России и в мире. В рамках этого семейства выпускаются чипы, адаптированные к самому широкому кругу задач, решаемых пользователями. Какова специфика отдельных Какие из них лучше всего адаптированы к разгону?

Общая информация о процессорах Core i5

Процессоры отзывы о которых различны, представлены микросхемами в нескольких поколениях. Несмотря на схожесть названия, технологически чипы могут очень сильно различаться.

Так, процессоры i5 первого поколения появились в 2009 году. Они были адаптированы для «десктопов», в них использовалось ядро Lynnfield, соответствующее архитектуре Nehalem. Следующая модификация чипов i5 появилась в 2010 году. В данных процессорах использовалось ядро Clarkdale, в них был встроен модуль обработки компьютерной графики. Отметим, что данные чипы, согласно распространенной в среде IT-экспертов классификации, одного поколения.

В 2011 году появились микросхемы Core i5 с архитектурой Sandy Bridge. Главная характеристика данного, выпущенного в рамках серии Intel Core i5, поколения — полная интеграция графического модуля с кристаллом чипа. В 2012 году появилась новая линейка процессоров — с ядром Ivy Bridge. В 2013 году американская корпорация выпустила процессоры типа Haswell, один из которых - Intel Core i5 4070K - вскоре стал особенно популярным в среде геймеров, так как его можно было, благодаря разблокированному множителю, самым эффективным образом разгонять.

Рассмотрим более подробно специфику новейших поколений - 3-го и 4-го, процессоров Intel Core i5, характеристики чипов на архитектуре Ivy Bridge и Haswell — насколько они могут соответствовать лидирующему положению американской корпорации на мировом рынке микрочипов?

Общая информация о процессорах Ivy Bridge

Особенности процессоров рассматриваемого семейства — наличие нескольких ядер, отсутствие поддержки технологии Hyper-Threading, обеспечивающей многопоточность, а также наличие кэш-памяти третьего уровня в размере 6 Мб. Как отмечают некоторые специалисты, процессоры в рамках рассматриваемого семейства характеризуются высокой степенью взаимной схожести в аспекте ключевых технологических характеристик. Так, например, все чипы Ivy Bridge реализованы в рамках техпроцесса 22 нм, в них присутствует кристалл типа E1, в котором — 1,4 млрд транзисторов.

Главная сильная сторона новой процессорной линейки — модернизированный графический ускоритель. Так, в рассматриваемой серии чипов используются модули типа HD Graphics 2500/4000. Они обеспечивают поддержку, в частности, таких интерфейсов, как DirectX в 11-й версии, OpenGL 4.0, а также OpenCL 1.1. Характеризуется отличной производительностью в аспекте работы с 3D-играми и требовательными приложениями.

Процессоры Ivy Bridge имеют высокотехнологичные контроллеры памяти и шины типа PCI Express. Таким образом, если материнская плата для Intel Core i5 предполагает поддержку видеокарт, использующих стандарт PCI Express в 3-й версии, то микрочипы рассматриваемого семейства способствуют достижению очень высоких показателей производительности ПК. То же самое можно сказать и в отношении модулей памяти типа DDR3 — взаимодействие между ними и процессорами Ivy Bridge также обеспечивает самую высокую эффективность работы компьютера.

Рассмотрим теперь особенности популярных процессоров в рамках 3-го поколения семейства Intel Core i5. Характеристики данных чипов, по отзывам многих пользователей и IT-экспертов, позволяют говорить о микросхемах как об очень эффективных аппаратных компонентах, способствующих решению самого широкого спектра задач пользователя.

Характеристики Core i5-3570K

Данный процессор считается флагманским в рамках 3-го поколения. Он лидирует в линейке по показателям тактовой частоты, а также характеризуется полезной во многих отношениях опцией — разблокированным множителем. Она позволяет, в частности, легко разгонять микрочип. Выше мы отметили, что данная особенность характеризует также и процессор Intel Core i5 4570K в новейшей линейке — Haswell. Однако она полностью функциональна. Многие геймеры в своих отзывах исключительно позитивно высказываются о возможности эффективного разгона процессора. Рассматриваемый чип оснащен тем самым высокопроизводительным графическим модулем — HD Graphics 4000.

Вместе с тем есть несколько более упрощенная модификация процессора — Intel Core i5-3570, то есть без индекса. Она характеризуется, в свою очередь, отсутствием возможности задействовать разблокированный множитель. К тому же, как свидетельствует описание его характеристик, данный процессор не обладает самой производительной версией графического модуля. На нем установлен ускоритель типа HD Graphics 2500, уступающий отмеченной выше модификации Graphics 4000.

Особенности Intel Core 3550

Другая примечательная модель Intel Core i5, отзывы о которой также весьма многочисленны — i5-3550. Данный процессор характеризуется пониженной тактовой частотой, и потому работает немного медленнее, чем флагманская модель. Но разница небольшая — 100 МГц. Поэтому, кстати, и стоимость данных процессоров почти одинаковая. Впрочем, как и ключевые характеристики.

Преимущества Intel Core i5-3470

Относится к категории младших моделей рассматриваемой линейки, соответственно, отличается пониженной ценой. Однако в целом производительность чипа сопоставима с флагманской модификацией — так, в нем установлено 4 ядра, кэш-память третьего уровня имеет объем в 6 Мб, тактовая частота процессора превышает 3 ГГц. Правда, в рассматриваемом типе процессора установлен менее производительный графический модуль — Graphics 2500, работающий при этом на частоте чуть ниже, чем тот же самый, но в старших модификациях процессора.

Специфика Intel Core i5-3450

Считается самой младшей моделью в рассматриваемой линейке. Между ней и вышеописанной модификацией — минимум различий, которые, по сути дела, выражаются в тактовой частоте. В модификации 3470 она немного выше. В остальном технические характеристики чипов совпадают.

Отзывы о третьем поколении Core i5

Итак, что говорят пользователи о третьем поколении Intel Core i5? Сравнение как отмечают энтузиасты микропроцессорных технологий, по сути дела, сводится к поиску различий между тремя показателями — версией графического ускорителя, наличием неразблокированного множителя, а также тактовой частотой. По мнению владельцев ПК, на которых инсталлирован тот или иной чип, даже если процессор характеризуется самой низкой частотой, не поддерживает разблокированного множителя, а также не настолько эффективно, как аналоги, обрабатывает графику — то в силу наличия модуля Graphics 2500. Но в любом случае в руки пользователя попадает исключительно высокопроизводительный инструмент.

Вопрос, волнующий многих владельцев ПК с процессором Intel Core i5 — "как разогнать процессор" - предполагает очень простой ответ: все, что нужно сделать, это выставить необходимые значения для множителя, который разблокирован в соответствующих модификациях чипа.

Никаких иных экспериментов производить не требуется, да и не рекомендуется, чтобы не нарушить заложенные производителем алгоритмы вычислений. Нужно также понимать, что при разгоне Intel Core i5 температура процессора может значительно увеличиться. Таким образом, следует заблаговременно оснащать процессор более мощным кулером.

Особенности Intel Core i5-4430

Переходим к изучению специфики чипов новейшего поколения - тех, в которых установлено ядро Haswell. Процессор типа i5-4430 можно считать самым младшим в рассматриваемой линейке. Характеризуется относительно невысокой тактовой частотой, к тому же обладает не самым желанным для геймеров свойством — отсутствием предусмотренных возможностей для разгона. Вместе с тем в процессорах данного типа — плавающий множитель, то есть их подбирается компьютером автоматически в зависимости от фактической нагрузки. В чипе есть поддержка технологии TurboBoost в версии 2.0.

Преимущества Intel Core i5-4440

В числе главных различий данного процессора и рассмотренного выше — разница в тактовой частоте. Соответствующий показатель для микрочипа i5-4440 — на 100 МГц выше. При этом совокупность ключевых инструкций в целом одинаковая. По остальным характеристикам процессоры идентичны.

Специфика Intel Core i5-4460

Благодаря увеличенной на 100 МГц частоте, работает быстрее предыдущей модификации процессора. Также набор инструкций несколько шире, чем у младших моделей линейки. В остальном характеристики чипов совпадают. Многие IT-эксперты, так же как и энтузиасты рассматривают три самых младших чипа линейки Haswell в едином контексте - как идентичные устройства. Фактически главное различие между ними — это тактовая частота, а в некоторых случаях — набор инструкций.

Характеристики Core i5-4570

Модель, которая характеризуется как занимающая срединное положение в семействе. В ней сочетаются практически все преимущества новейшей линейки чипов Core i5 — такие как, например, полноценная работа TurboBoost, совместимость с vPro, а также TXT. В рассматриваемых чипах поддерживаются все предусмотренные технологической линейкой инструкции.

Мощности компьютеров с установленным чипом i5-4570 хватает для выполнения основных задач пользователя и для запуска игр — но при условии, что необходимыми характеристиками в аспекте производительности будет обладать материнская плата для Intel Core i5, а также установленная на ней видеокарта. Значимый аспект — качество системных программ. Так, для полноценного задействования возможностей Intel Core i5 драйвера для всех девайсов должны стоять актуальные.

Преимущества Core i5-4670K

Это и есть тот самый процессор, который так любят геймеры. Цель, с которой многие из них покупают рассматриваемый чип Intel Core i5 — разгон. Осуществлять его можно, да еще и добиваться при этом самых выдающихся результатов благодаря разблокированному множителю микросхемы.

Правда, в некоторых аспектах рассматриваемый чип уступает предыдущей модификации, в частности он не поддерживает стандарты vPro и TXT, необходимые для обеспечения повышенной защиты компьютера от вредоносных программ. Ключевые характеристики чипа i5-4570K идентичны предыдущей модификации. Он отлично справляется с играми — но опять же при условии, что высокой производительностью характеризуются материнская плата для Intel Core i5, а также, что очень важно, видеокарта. Основная методология разгона микрочипов — увеличение множителя.

Особенности Core i5-4690

Данная модель — в числе новейших. Можно отметить, что каких-либо явно бросающихся в глаза изменений характеристик в сопоставлении с предыдущими модификациями процессоров в нем нет. Быть может, только тактовая частота выросла в сравнении с Core i5-4570 на 100 МГц. Также в процессоре появилась поддержка ряда современных инструкций. Но в целом компания Intel не предприняла революционных шагов в аспекте модернизации чипов, так как, по-видимому, они и без того соответствуют критериям, характеризующим производителя как лидера рынка.

Какой из рассмотренных нами процессоров — лучший? Intel Core i5, как мы отметили в самом начале статьи — это семейство чипов, очень отличающихся между собой. Причем не только в аспекте сравнения поколений, но также и иногда в рамках одной и той же линейки. Каждый микрочип из числа исследованных нами оптимален для решения своих задач с точки зрения цены и производительности. Важно, чтобы на ПК, на котором устанавливается Intel Core i5, драйвера устройств были самыми свежими и качественными. Программная составляющая не менее важна с точки зрения достижения высокой чем аппаратные компоненты.

Оптимальная материнская плата

Какие характеристики в идеале должна иметь материнская плата для Intel Core i5? Так чтобы все предусмотренные производителем возможности процессора можно было в полной мере задействовать? Эксперты рекомендуют соответствующий аппаратный компонент, поддерживающий чипсет Z87 — особенно он пригодится пользователям, планирующим разгонять чипы.

Например, Gigabyte GA-Z87-HD3 — оптимально подходящая для таких целей материнская плата. Intel Core i5 в тех модификациях, которые приспособлены для разгона, станет отличным инструментом для энтузиаста "оверклокинга" - при наличии соответствующего аппаратного компонента в структуре ПК. Можно отметить, что данная материнская плата подходит для всех процессоров, поддерживающих стандарт LGA 1150 — то есть это существенно расширяет ее функциональность. Касательно иных полезных характеристик рассматриваемого аппаратного компонента можно выделить поддержку портов USB 2.0, а также 3.0, совместимость с SATA 3. Еще одна примечательная возможность материнской платы от Gigabyte — в ней предусмотрена одновременная работа сразу двух видеокарт.

Отличный вариант для процессоров типа Core i5 в третьем поколении — материнская плата MSI H61M-P31 (G3), которая базируется на чипсете H61. В ней есть поддержка двух модулей ОЗУ типа G.Skill DDR3-1600 с объемом в 4 Гб. Есть поддержка высокопроизводительных видеокарт типа Рассматриваемая материнская плата часто используется IT-экспертами при тестировании производительности процессоров линейки Intel Core i5.

Другая высокопроизводительная материнская плата, на которой можно устанавливать процессоры рассматриваемого семейства — Gigabyte G1.Sniper 5. Она характеризуется достаточно высокой ценой — порядка 20 тыс. руб., но более дешевые модели не всегда способны решать задачи, соответствующие производительности чипов Intel Core i5. Рассматриваемая материнская плата поддерживает стандарт LGA1150, в ней можно установить 4 слота ОЗУ типа DDR3, работающих на частоте в интервалах от 1333 до 3000 МГц. Имеется поддержка стандарта SLI/CrossFireX. Также материнская плата позволяет устанавливать компоненты, совместимые с высокоскоростным слотом типа SATA, позволяющим передавать данные со скоростью 6 Гбит/сек. Есть поддержка беспроводных технологий.

В этой статье будут детально рассмотрены последние поколения процессоров Intelна основе архитектуры «Кор». Эта компания занимает ведущее положение на рынке компьютерных систем, и большинство ПК на текущий момент собираются именно на ее полупроводниковых чипах.

Стратегия развития компании «Интел»

Все предыдущие поколения процессоров Intel были подчинены двухлетнему циклу. Подобная стратегия выпуска обновлений от данной компании получила название «Тик-Так». Первый этап, называемый «Тик», заключался в переводе ЦПУ на новый технологический процесс. Например, в плане архитектуры поколения «Санди Бридж» (2-е поколение) и «Иви Бридж» (3-е поколение) были практически идентичными. Но технология производства первых базировалась на нормах 32 нм, а вторых — 22 нм. То же самое можно сказать и про «ХасВелл» (4-е поколение, 22 нм) и «БроадВелл» (5-е поколение, 14 нм). В свою очередь, этап «Так» означает кардинальное изменение архитектуры полупроводниковых кристаллов и существенный прирост производительности. В качестве примера можно привести такие переходы:

    1-е поколение Westmere и 2-е поколение «Санди Бридж». Технологический процесс в этом случае был идентичным — 32 нм, а вот изменения в плане архитектуры чипа существенные — северный мост материнской платы и встроенный графический ускоритель перенесены на ЦПУ.

    3-е поколение «Иви Бридж» и 4-е поколение «ХасВелл». Оптимизировано энергопотребление компьютерной системы, повышены тактовые частоты чипов.

    5-е поколение «БроадВелл» и 6-е поколение «СкайЛайк». Снова повышены частота, еще более улучшено энергопотребление и добавлены несколько новых инструкций, которые улучшают быстродействие.

Сегментация процессорных решений на базе архитектуры «Кор»

Центральные процессорные устройства компании «Интел» имеют следующее позиционирование:

    Наиболее доступные решения — это чипы «Целерон». Они подходят для сборки офисных компьютеров, которые предназначены для решения наиболее простых задач.

    На ступеньку выше расположились ЦПУ серии «Пентиум». В архитектурном плане они практически полностью идентичны младшим моделям «Целерон». Но вот увеличенный кэш 3-го уровня и более высокие частоты дают им определенное преимущество в плане производительности. Ниша этого ЦПУ — игровые ПК начального уровня.

    Средний сегмент ЦПУ от «Интел» занимают решения на основе «Кор Ай3». Предыдущие два вида процессоров, как правило, имеют всего 2 вычислительных блока. То же самое можно сказать и про «Кор Ай3». Но вот у первых двух семейств чипов отсутствует поддержка технологии «ГиперТрейдинг», а у «Кор Ай3» - она есть. В результате на уровне софта 2 физических модуля преобразуются в 4 потока обработки программы. Это обеспечивает существенный прирост быстродействия. На базе таких продуктов уже можно собрать игровой ПК среднего уровня, или даже сервер начального уровня.

    Нишу решений выше среднего уровня, но ниже премиум-сегмента заполняют чипы занимают решения на базе «Кор Ай5». Этот полупроводниковый кристалл может похвастаться наличием сразу 4 физических ядер. Именно этот архитектурный нюанс и обеспечивает преимущество в плане производительности над «Кор Ай3». Более свежие поколения процессоров Intel i5 имеют более высокие тактовые частоты и это позволяет постоянно получать прирост производительности.

    Нишу премиум-сегмента занимают продукты на основе «Кор Ай7». Количество вычислительных блоков у них точно такое же, как и у «Кор Ай5». Но вот у них, точно также, как и у «Кор Ай3», есть поддержка технологии с кодовым названием «Гипер Трейдинг». Поэтому на программном уровне 4 ядра преобразуются в 8 обрабатываемых потоков. Именно этот нюанс и обеспечивает феноменальный уровень производительности, которым может похвастаться любой Цена у этих чипов соответствующая.

Процессорные разъемы

Поколения устанавливаются в разные типы сокетов. Поэтому установить первые чипы на этой архитектуре в материнскую плату для ЦПУ 6-го поколения не получится. Или, наоборот, чип с кодовым названием «СкайЛайк» физически не получится поставить в системную плату для 1-го или 2-го поколения процессоров. Первый процессорный разъем назывался «Сокет Н», или LGA 1156 (1156 - это количество контактов). Выпущен он был в 2009 году для первых ЦПУ, изготовленных по нормам допуска 45 нм (2008 год) и 32 нм (2009 год), на базе данной архитектуры. На сегодняшний день он устарел как морально, так и физически. В 2010 году на смену приходит LGA 1155, или «Сокет Н1». Материнские платы данной серии поддерживают чипы «Кор» 2-го и 3-го поколений. Кодовые названия у них, соответственно, «Санди Бридж» и «Иви Бридж». 2013 год ознаменовался выходом уже третьего сокета для чипов на основе архитектуры «Кор» - « LGA 1150», или «Сокет Н2». В этот процессорный разъем можно было установить ЦПУ уже 4-го и 5-го поколений. Ну а в сентябре 2015 года на смену LGA 1150 пришел последний актуальный сокет - LGA 1151.

Первое поколение чипов

Наиболее доступными процессорными продуктами этой платформы являлись «Целерон G1101»(2,27 ГГц), «Пентиум G6950» (2,8 ГГц) и «Пентиум G6990»(2,9 ГГц). Все они имели всего 2 ядра. Нишу решений среднего уровня занимали «Кор Ай3» с обозначением 5ХХ (2 ядра/4 логических потока обработки информации). На ступеньку выше находились «Кор Ай5» с маркировкой 6ХХ (у них параметры идентичные «Кор Ай3», но частоты выше) и 7ХХ с 4-мя реальными ядрами. Наиболее производительные компьютерные системы собирались на базе «Кор Ай7». Их модели имели обозначение 8ХХ. Наиболее скоростной чип в этом случае имел маркировку 875К. За счет разблокированного множителя можно было разогнать такой Цена же у него была соответствующая. Соответственно можно было получить внушительный прирост быстродействия. Кстати, наличие приставки «К» в обозначении модели ЦПУ означало то, что множитель разблокирован и эту модель можно разгонять. Ну а приставка «S» добавлялась в обозначении энергоэффективных чипов.

Плановое обновление архитектуры и «Санди Бридж»

На смену первому поколению чипов на основе архитектуры «Кор» в 2010 году пришли решения под кодовым названием «Санди Бридж». Ключевыми «фишками» их были перенос северного моста и встроенного графического ускорителя на кремниевый кристалл кремниевого процессора. Нишу наиболее бюджетных решений занимали «Целероны» серий G4XX и G5XX. В первом случае был урезан кэш 3-го уровня и присутствовало всего одно ядро. Вторая серия, в свою очередь, могла похвастаться наличием сразу двух вычислительных блоков. Еще на ступеньку выше расположились «Пентиумы» моделей G6XX и G8XX. В этом случае разница в производительности обеспечивалась более высокими частотами. Именно G8XX из-за этой важной характеристики выглядели предпочтительнее в глазах конечного пользователя. Линейка «Кор Ай3» была представлена моделями 21ХХ (именно цифра «2» и указывает на то, что чип относится ко второму поколению архитектуры «Кор»). У некоторых из них в конце добавлялся индекс «Т» - более энергоэффективные решения с уменьшенной производительностью.

В свою очередь решения «Кор Ай5» имели обозначения 23ХХ, 24ХХ и 25ХХ. Чем выше маркировка модели, тем более высокий уровень производительности ЦПУ. Индекс «Т» в конце - это наиболее энергоэффективное решение. Если добавлена в конце наименования буква «S» - промежуточный вариант по энергопотреблению между «Т» - версией чипа и штатным кристаллом. Индекс «Р» - в чипе отключен графический ускоритель. Ну и чипы с буквой «К» имели разблокированный множитель. Подобная маркировка актуальна также и для 3-го поколения этой архитектуры.

Появления нового более прогрессивного технологического процесса

В 2013 году свет увидело уже 3-е поколение ЦПУ на основе данной архитектуры. Ключевое его нововведение — это обновленный техпроцесс. В остальном же не было введено в них каких-либо существенных нововведений. Физически они были совместимы со предыдущим поколением ЦПУ и их можно было ставить в те же самые материнские платы. Структура обозначений у них осталась идентичной. «Целероны» имели обозначение G12XX, а «Пентиумы» - G22XX. Только в начале вместо «2» была уже «3», которая и указывала на принадлежность к 3-му поколению. Линейка «Кор Ай3» имела индексы 32ХХ. Более продвинутые «Кор Ай5» обозначались 33ХХ, 34ХХ и 35ХХ. Ну флагманские решения «Кор Ай7» имели маркировку 37ХХ.

Четвертая ревизия архитектуры «Кор»

Следующим этапом стало 4 поколение процессоров Intel на основе архитектуры «Кор». Маркировка в этом случае была такая:

    ЦПУ экономкласса «Целероны» обозначались G18XX.

    «Пентиумы» же имели индексы G32XX и G34XX.

    За «Кор Ай3» были закреплены такие обозначения - 41ХХ и 43ХХ.

    «Кор Ай5» можно было узнать по аббревиатуре 44ХХ, 45ХХ и 46ХХ.

    Ну и для обозначения «Кор Ай7» были выделены 47ХХ.

Пятое поколения чипов

на базе данной архитектуры в основном было ориентировано на использование в мобильных устройствах. Для десктопных же ПК были выпущены лишь чипы линеек «Ай 5» и «Ай 7». Причем лишь весьма ограниченное количество моделей. Первые из них обозначались 56ХХ, а вторые — 57ХХ.

Наиболее свежие и перспективные решения

6 поколение процессоров Intel дебютировало в начале осени 2015 года. Это наиболее актуальная процессорная архитектура на текущий момент. Чипы начального уровня обозначаются в этом случае G39XX («Целерон»), G44XX и G45XX (так маркируются «Пентиумы»). Процессоры «Кор Ай3» имеют обозначение 61ХХ и 63ХХ. В свою очередь, «Кор Ай5» - это 64ХХ, 65ХХ и 66ХХ. Ну на обозначение флагманских решений выделено лишь маркировка 67ХХ. Новое поколение процессоров Intelпребываетлишь только в начале своего жизненного цикла и такие чипы будут актуальными еще достаточно длительное время.

Особенности разгона

Практически все чипы на основе данной архитектуры имеют заблокированный множитель. Поэтому разгон в этом случае возможен лишь за счет увеличения частоты В последнем, 6-м поколении, даже эту возможность увеличения быстродействия должны будут отключить в БИОСе производители материнских плат. Исключением в этом плане являются процессоры серий «Кор Ай5» и «Кор Ай7» с индексом «К». У них множитель разблокирован и это позволяет существенно увеличивать производительность компьютерных систем на баз таких полупроводниковых продуктов.

Мнение владельцев

Все перечисленные в этом материале поколения процессоров Intel имеют высокую степень энергоэффективность и феноменальный уровень быстродействия. Единственный их недостаток — это высокая стоимость. Но причина здесь кроется в том, что прямой конкурент «Интела» в лице компании «АМД», не может противопоставить ей более или менее стоящие решения. Поэтому «Интел» уже исходя из своих собственных соображений и устанавливает ценник на свою продукцию.

Итоги

В этой статье были детально рассмотрены поколения процессоров Intel лишь для настольных ПК. Даже этого перечня достаточно для того, чтобы потеряться в обозначениях и наименованиях. Кроме этого, есть также варианты для компьютерных энтузиастов (платформа 2011) и различные мобильные сокеты. Все это сделано лишь для того, чтобы конечный пользователь мог выбрать наиболее оптимальный для решения своих задач. Ну а наиболее актуальным сейчас из рассмотренных вариантов являются чипы 6-го поколения. Именно на них и нужно обращать внимание при покупке или сборке нового ПК.